@@@@1999 年 8 月 2 日对于英国 Cirencester 小镇而言是一个特别热的日子,Bishops 街一家购物中心的 巨型钢化玻璃屋顶在毫无预兆的情况下就破碎了。@@@@Pilkington 的一家巨型玻璃制造商(该破碎玻璃的制 造厂商)对玻璃碎片进行了分析,他们发现这次事件的罪魁祸首是玻璃内部的微小硫化镍晶体。@@@@@@@@“玻璃行业已经意识到了问题的存在,”GGF 协会主席说道。@@@@但是他坚称,这一案例实属罕见。@@@@“这是一种很少见的现象,”他说道。@@@@ @@@@其他人却不这样看。@@@@“平均来说,我每个月都会看到一两个建筑物上会有玻璃因为硫化镍晶体问题而破碎,”Barrie Josie 说道,他是一位 Bishops 街事件调查小组的成员之一。@@@@其他专家也讲述了类似经历。@@@@Tony Wilmott 和 Simon Armstrong 都说他们知道几百个类似案例。@@@@“你听到的只是冰山一角,”一位在布里斯班昆士兰的解决工程的玻璃专家Trevor Ford 说。@@@@他觉得原因很简单:“没有人喜欢坏消息。”@@@@  @@@@钢化玻璃随处可见,例如汽车玻璃、窗户以及世界各地的数以百万计的建筑物上的玻璃幕墙和玻璃屋顶。@@@@采用玻璃的原因也很简单。@@@@这种玻璃的强度是普通玻璃的五倍,而且当钢化玻璃破碎的时候, 会产生小型块状碎片,而不会产生大块的锋利碎片。@@@@建筑师热衷于使用钢化玻璃,因为大块的钢化玻璃板很容易拼凑出整面的透明幕墙,而且也可以用类似的方法做成天花板和地板。@@@@ @@@@钢化玻璃的制造过程是:将一块普通玻璃加热到 620℃,以使其轻微软化,结构膨胀,然后用冷水喷射使其快速冷却。@@@@这使得玻璃板外层先于内层收缩和固化。@@@@当内层最终固化并且收缩时,内层会对外层施加某种拉力,使之处于恒久压力的作用中,从而产生玻璃内部的张力。@@@@裂缝在处于压力作用下的物质中最容易扩散,而压力要克服玻璃表面的张力才会导致玻璃破碎,因此钢化玻璃具有防裂效果。@@@@@@@@当玻璃中存在硫化镍之类的杂质时,就会出现问题。@@@@制造玻璃的原材料中通常会含有微量的镍和 硫,在熔融状态的玻璃中添加的镍合金也会使玻璃中含有镍。@@@@随着玻璃被加热,这些原子就会发生反 应,形成微小的硫化镍晶体。@@@@一个熔炉里含有十分之一克的镍,就足以产生 50 000 个晶体。@@@@@@@@这些晶体以两种形式存在:一种是致密结构,称为 AP,这种结构在高温下仍然稳定;另一种是非 致密结构,称为 BP,这种钢结构在常温下稳定。@@@@钢化工艺中所使用的高温把所有的晶体都变成了致 密、高强度的 AP 状态。@@@@但是随后的冷却过程过快,导致晶体结构来不及回到 BP 状态。@@@@这就使得不稳 定的 AP 晶体留在了玻璃中,就像被压缩的弹簧一样,随时在毫无征兆的情况下回到 BP 状态。@@@@@@@@当这个过程发生时,晶体颗粒会膨胀 4%。@@@@如果这些晶体可以位于中央张力最大的位置,它们所释 放出来的张力可以使整块玻璃破碎。@@@@玻璃要多久才会破碎,这是无法预测的。@@@@也许出厂后几个月就会发 生,也许几十年后才发生,但是阳光的加热也会使这一过程加速发生。@@@@具有讽刺意味的是,Graham Dodd 说,由于硫化镍原因而导致破碎的钢化玻璃中,使用年份最长的位于Lancashire郡Lathom 市的 Pilkington 玻璃研究中心。@@@@那块玻璃足足用了 27 年之久。@@@@@@@@我们很难发现数据来证明硫化镍所造成的问题的规模。@@@@硫化镍问题的大量涌现使得事情更加复杂 化。@@@@平均来说,即便 7 吨玻璃中只有一吨含有硫化镍,即便你所在的建筑物中只有一次硫化镍事件是 你亲眼见过的,那也意味着有问题的不止是一块玻璃。@@@@Josie 说,在过去的十年中,他研究了 15 座建 筑,玻璃破碎事件的数量已经翻番。@@@@@@@@最严重的一次发生在 Waterfront Place,这栋建筑建成于 1990 年。@@@@在随后的十年中,这栋位于布里 斯班的 40 层大楼遭遇了一系列的玻璃破碎事件。@@@@在专家介入之前,有八十块玻璃因为含硫化镍而破 碎。@@@@John Barry 分析了该建筑物中的每一块玻璃。@@@@通过使用专业相机,摄影师在吊车内拍摄了每块玻璃 的相片。@@@@随后,这些照片被放在了经过改装的微缩胶片机上进行硫化镍晶体扫描。@@@@“我们发现至少还有 120 块玻璃有潜在危险,这些玻璃后来被更换了,”Barry 说,“这个过程非常昂贵,也很耗时,大概用了六个月时间才完成。”@@@@尽管这个项目花去了 160 万澳元,但是另一个方案(重新装修整栋大厦)的花费大 概将是这个数字的十倍。@@@@